Replication-independent expression of genome components and capsid protein of brome mosaic virus in planta: a functional role for viral replicase in RNA packaging.

نویسندگان

  • Padmanaban Annamalai
  • A L N Rao
چکیده

To begin elucidation of the relationship between Brome mosaic virus (BMV) replication and encapsidation, we used a T-DNA-based Agrobacterium-mediated transient expression (agroinfiltration) system in Nicotiana benthamiana leaves to express either individual or desired pairs of the three genomic RNAs. The packaging competence of these RNAs into virions formed by the transiently expressed coat protein (CP) was analyzed. We found that in the absence of a functional replicase, assembled virions contained non-replicating viral RNAs (RNA1 or RNA2 or RNA3 or RNA1 + RNA3 or RNA2 + RNA3) as well as cellular RNAs. By contrast, virions assembled in the presence of a functional replicase contained only viral RNAs. To further elucidate the specificity exhibited by the functional viral replicase in RNA packaging, replication-defective RNA1 and RNA2 were constructed by deleting the 3' tRNA-like structure (3' TLS). Co-expression of TLS-less RNA1 and RNA2 with wt RNA3 resulted in efficient synthesis of subgenomic RNA4. Virions recovered from leaves co-expressing TLS-less RNA1 and RNA2 and either CP mRNA or wt RNA3 exclusively contained viral RNAs. These results demonstrated that packaging of BMV genomic RNAs is not replication dependent whereas expression of a functional viral replicase plays an active role in increasing specificity of RNA packaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A physical interaction between viral replicase and capsid protein is required for genome-packaging specificity in an RNA virus.

Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP ...

متن کامل

Replication-coupled packaging mechanism in positive-strand RNA viruses: synchronized coexpression of functional multigenome RNA components of an animal and a plant virus in Nicotiana benthamiana cells by agroinfiltration.

Flock house virus (FHV), a bipartite RNA virus of insects and a member of the Nodaviridae family, shares viral replication features with the tripartite brome mosaic virus (BMV), an RNA virus that infects plants and is a member of the Bromoviridae family. In BMV and FHV, genome packaging is coupled to replication, a widely conserved mechanism among positive-strand RNA viruses of diverse origin. ...

متن کامل

Brome mosaic virus capsid protein regulates accumulation of viral replication proteins by binding to the replicase assembly RNA element.

Viruses provide valuable insights into the regulation of molecular processes. Brome mosaic virus (BMV) is one of the simplest entities with four viral proteins and three genomic RNAs. Here we report that the BMV capsid protein (CP), which functions in RNA encapsidation and virus trafficking, also represses viral RNA replication in a concentration-dependent manner by inhibiting the accumulation ...

متن کامل

Recognition of the core RNA promoter for minus-strand RNA synthesis by the replicases of Brome mosaic virus and Cucumber mosaic virus.

Replication of viral RNA genomes requires the specific interaction between the replicase and the RNA template. Members of the Bromovirus and Cucumovirus genera have a tRNA-like structure at the 3' end of their genomic RNAs that interacts with the replicase and is required for minus-strand synthesis. In Brome mosaic virus (BMV), a stem-loop structure named C (SLC) is present within the tRNA-like...

متن کامل

Depurination within the intergenic region of Brome mosaic virus RNA3 inhibits viral replication in vitro and in vivo

Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Virology

دوره 338 1  شماره 

صفحات  -

تاریخ انتشار 2005